Machine learning-based prediction of polaron-vacancy patterns on the TiO<sub>2</sub>(110) surface

Author(s)
Viktor C. Birschitzky, Igor Sokolović, Michael Prezzi, Krisztián Palotás, Martin Setvín, Ulrike Diebold, Michele Reticcioli, Cesare Franchini
Abstract

The multifaceted physics of oxides is shaped by their composition and the presence of defects, which are often accompanied by the formation of polarons. The simultaneous presence of polarons and defects, and their complex interactions, pose challenges for first-principles simulations and experimental techniques. In this study, we leverage machine learning and a first-principles database to analyze the distribution of surface oxygen vacancies (V

O) and induced small polarons on rutile TiO

2(110), effectively disentangling the interactions between polarons and defects. By combining neural-network supervised learning and simulated annealing, we elucidate the inhomogeneous V

O distribution observed in scanning probe microscopy (SPM). Our approach allows us to understand and predict defective surface patterns at enhanced length scales, identifying the specific role of individual types of defects. Specifically, surface-polaron-stabilizing V

O-configurations are identified, which could have consequences for surface reactivity.

Organisation(s)
Computational Materials Physics
External organisation(s)
Technische Universität Wien, Wigner Research Centre for Physics, Charles University Prague, University of Bologna
Journal
npj Computational Materials
Volume
10
No. of pages
9
ISSN
2096-5001
DOI
https://doi.org/10.1038/s41524-024-01289-4
Publication date
01-2024
Peer reviewed
Yes
Austrian Fields of Science 2012
103009 Solid state physics
Keywords
ASJC Scopus subject areas
Mechanics of Materials, Materials Science(all), Computer Science Applications, Modelling and Simulation
Portal url
https://ucrisportal.univie.ac.at/en/publications/machine-learningbased-prediction-of-polaronvacancy-patterns-on-the-tio2110-surface(1c46a1fe-bcab-4dfa-8cd7-2dfd25e717fb).html