Geometric and magnetic properties of Pt clusters supported on graphene: Relativistic density-functional calculations

Author(s)
Piotr Blonski, Juergen Hafner
Abstract

The geometric and magnetic structures of small Pt-n clusters (n = 1 - 5) supported on a graphene layer have been investigated using ab initio density functional calculations including spin-orbit coupling. Pt-Pt interactions were found to be much stronger than the Pt-C interactions promoting the binding to the support. As a consequence, the equilibrium structure of the gas-phase clusters is preserved if they are deposited on graphene. However, the clusters bind to graphene only via at most two Pt-C bonds: A Pt-2 dumbbell prefers an upright position, the larger clusters are bound to graphene only via one edge of the planar cluster (Pt-3 and Pt-5) or via two terminal Pt atoms of a bent Pt-4 rhombus. Evidently, the strong buckling of the graphene layer induced by the Pt-C bonds prevents the formation of a larger number of cluster-support bonds. As the local spin and orbital magnetic moments are quenched on the Pt atoms forming Pt-C bonds, the magnetic structure of the supported clusters is much more inhomogeneous as in the gas-phase. This leads to noncollinear magnetic structures and a strongly reduced magnetic anisotropy energy.

Organisation(s)
Computational Materials Physics
Journal
Journal of Chemical Physics
Volume
134
No. of pages
12
ISSN
0021-9606
DOI
https://doi.org/10.1063/1.3577517
Publication date
2011
Peer reviewed
Yes
Austrian Fields of Science 2012
103009 Solid state physics, 103015 Condensed matter, 103025 Quantum mechanics, 103036 Theoretical physics
Portal url
https://ucrisportal.univie.ac.at/en/publications/079051e1-49e4-4c47-93d4-9c78767a230c